The Simple Essence of Overloading: Making ad-hoc polymorphism more algebraic with flow-based variational type-checking
This program is tentative and subject to change.
Type-directed overload resolution allows programmers to reuse the same name, offloading disambiguation to the type checker. Since many programming languages implement overload resolution by performing backtracking in the type checker, it is commonly believed to be incompatible with Hindley-Milner-style type systems. In this paper, we present an approach to overload resolution that combines insights from variational type checking and algebraic subtyping. We formalize and discuss our flow-based variational framework that captures the essence of overloads by representing them as choices. This cleanly separates constraint collection, constraint solving, and overload resolution. We believe our framework not only gives rise to more modular and efficient implementations of type checkers, but also serves as a simpler mental model and paves the way for improved error messages.
This program is tentative and subject to change.
Sat 18 OctDisplayed time zone: Perth change
10:30 - 12:15 | |||
10:30 15mTalk | Borrowing From Session Types OOPSLA Hannes Saffrich University of Freiburg, Janek Spaderna University of Freiburg, Germany, Peter Thiemann University of Freiburg, Germany, Vasco T. Vasconcelos LASIGE, University of Lisbon | ||
10:45 15mTalk | Modal Effect Types OOPSLA Wenhao Tang The University of Edinburgh, Leo White Jane Street, Stephen Dolan Jane Street, Daniel Hillerström Category Labs and The University of Edinburgh, Sam Lindley The University of Edinburgh, Anton Lorenzen University of Edinburgh | ||
11:00 15mTalk | On Higher-Order Model Checking of Effectful Answer-Type-Polymorphic Programs OOPSLA Taro Sekiyama National Institute of Informatics, Ugo Dal Lago University of Bologna & INRIA Sophia Antipolis, Hiroshi Unno Tohoku University | ||
11:15 15mTalk | Proof Repair across Quotient Type Equivalences OOPSLA Cosmo Viola University of Illinois Urbana-Champaign, Max Fan Cornell University, Talia Lily Ringer University of Illinois Urbana-Champaign | ||
11:30 15mTalk | Structural Information Flow: A Fresh Look at Types for Non-Interference OOPSLA Hemant Gouni Carnegie Mellon University, Frank Pfenning Carnegie Mellon University, USA, Jonathan Aldrich Carnegie Mellon University Pre-print | ||
11:45 15mTalk | The Simple Essence of Overloading: Making ad-hoc polymorphism more algebraic with flow-based variational type-checking OOPSLA Pre-print | ||
12:00 15mTalk | We’ve Got You Covered: Type-Guided Repair of Incomplete Input Generators OOPSLA Patrick LaFontaine Purdue University, Zhe Zhou Purdue University, Ashish Mishra IIT Hyderabad, Suresh Jagannathan Purdue University, Benjamin Delaware Purdue University |