Interleaving Large Language Models for Compiler Testing
This program is tentative and subject to change.
Testing compilers with AI models, especially large language models (LLMs), has shown great promise. However, current approaches struggle with two key problems: The generated programs for testing compilers are often too simple, and extensive testing with the LLMs is computationally expensive. In this paper, we propose a novel compiler testing framework that decouples the testing process into two distinct phases: an offline phase and an online phase. In the offline phase, we use LLMs to generate a collection of small but feature-rich code pieces. In the online phase, we reuse these code pieces by strategically combining them to build high-quality and valid test programs, which are then used to test compilers.
We implement this idea in a tool, LegoFuzz, for testing C compilers. The results are striking: we found 66 bugs in GCC and LLVM, the most widely used C compilers. Almost half of the bugs are miscompilation bugs, which are serious and hard-to-find bugs that none of the existing LLM-based tools could find. We believe this efficient design opens up new possibilities for using AI models in software testing beyond just C compilers.
This program is tentative and subject to change.
Fri 17 OctDisplayed time zone: Perth change
13:45 - 15:30 | |||
13:45 15mTalk | An Empirical Evaluation of Property-Based Testing OOPSLA | ||
14:00 15mTalk | Fray: An Efficient General-Purpose Concurrency Testing Platform for the JVM OOPSLA Ao Li Carnegie Mellon University, Byeongjee Kang Carnegie Mellon University, Vasudev Vikram Carnegie Mellon University, Isabella Laybourn Carnegie Mellon University, Samvid Dharanikota Efficient Computer, Shrey Tiwari Carnegie Mellon University, Rohan Padhye Carnegie Mellon University Pre-print Media Attached | ||
14:15 15mTalk | Fuzzing C++ Compilers via Type-Driven Mutation OOPSLA Bo Wang Beijing Jiaotong University, Chong Chen Beijing Jiaotong University, Ming Deng Beijing Jiaotong University, Junjie Chen Tianjin University, Xing Zhang Peking University, Youfang Lin Beijing Jiaotong University, Dan Hao Peking University, Jun Sun Singapore Management University | ||
14:30 15mTalk | Interleaving Large Language Models for Compiler Testing OOPSLA | ||
14:45 15mTalk | Model-guided Fuzzing of Distributed Systems OOPSLA Ege Berkay Gulcan Delft University of Technology, Burcu Kulahcioglu Ozkan Delft University of Technology, Rupak Majumdar MPI-SWS, Srinidhi Nagendra IRIF, Chennai Mathematical Institute | ||
15:00 15mTalk | Tuning Random Generators: Property-Based Testing as Probabilistic Programming OOPSLA Ryan Tjoa University of Washington; Jane Street, Poorva Garg University of California, Los Angeles, Harrison Goldstein University at Buffalo, the State University of New York at Buffalo, Todd Millstein University of California at Los Angeles, Benjamin C. Pierce University of Pennsylvania, Guy Van den Broeck University of California at Los Angeles Pre-print | ||
15:15 15mTalk | UTFix: Change Aware Unit Test Repairing using LLM OOPSLA Shanto Rahman The University of Texas at Austin, Sachit Kuhar Amazon Web Services, Berk Cirisci Amazon Web Services, Pranav Garg AWS, Shiqi Wang AWS AI Labs, Xiaofei Ma AWS AI Labs, Anoop Deoras AWS AI Labs, Baishakhi Ray Columbia University |