Compositional Quantum Control Flow with Efficient Compilation in Qunity
This program is tentative and subject to change.
Most existing quantum programming languages are based on the quantum circuit model of computation, as higher-level abstractions are particularly challenging to implement—especially ones relating to quantum control flow. The Qunity language, proposed by Voichick et al., offered such an abstraction in the form of a quantum control construct, with great care taken to ensure that the resulting language is still realizable. However, Qunity lacked a working implementation, and the originally proposed compilation procedure was very inefficient, with even simple quantum algorithms compiling to unreasonably large circuits.
In this work, we focus on the efficient compilation of high-level quantum control flow constructs, using Qunity as our starting point. We introduce a wider range of abstractions on top of Qunity’s core language that offer compelling trade-offs compared to its existing control construct. We create a complete implementation of a Qunity compiler, which converts high-level Qunity code into the quantum assembly language OpenQASM 3. We develop optimization techniques for multiple stages of the Qunity compilation procedure, including both low-level circuit optimizations as well as methods that consider the high-level structure of a Qunity program, greatly reducing the number of qubits and gates used by the compiler.
This program is tentative and subject to change.
Sat 18 OctDisplayed time zone: Perth change
10:30 - 12:15 | |||
10:30 15mTalk | AccelerQ: Accelerating Quantum Eigensolvers With Machine Learning on Quantum Simulators OOPSLA Avner Bensoussan King's College London, Elena Chachkarova Kings College London, Karine Even-Mendoza King’s College London, Sophie Fortz King's College London, Connor Lenihan King's College London | ||
10:45 15mTalk | A Language for Quantifying Quantum Network Behavior OOPSLA Anita Buckley USI Lugano, Pavel Chuprikov Télécom Paris, Institut Polytechnique de Paris, Rodrigo Otoni USI Lugano, Robert Soulé Yale University, Robert Rand University of Chicago, Patrick Eugster USI Lugano, Switzerland | ||
11:00 15mTalk | Compositional Quantum Control Flow with Efficient Compilation in Qunity OOPSLA Mikhail Mints California Institute of Technology, Finn Voichick University of Maryland, Leonidas Lampropoulos University of Maryland, College Park, Robert Rand University of Chicago | ||
11:15 15mTalk | Dependency-Aware Compilation for Surface Code Quantum Architectures OOPSLA Abtin Molavi University of Wisconsin-Madison, Amanda Xu University of Wisconsin-Madison, Swamit Tannu University of Wisconsin-Madison, Aws Albarghouthi University of Wisconsin-Madison | ||
11:30 15mTalk | QbC: Quantum Correctness by Construction OOPSLA | ||
11:45 15mTalk | qblaze: An Efficient and Scalable Sparse Quantum Simulator OOPSLA Hristo Venev INSAIT, Sofia University "St. Kliment Ohridski", Thien Udomsrirungruang University of Oxford, Dimitar Dimitrov INSAIT, Sofia University "St. Kliment Ohridski", Timon Gehr ETH Zurich, Martin Vechev ETH Zurich | ||
12:00 15mTalk | Shaking Up Quantum Simulators with Fuzzing and Rigour OOPSLA Vasileios Klimis Queen Mary University of London, Karine Even-Mendoza King’s College London, Avner Bensoussan King's College London, Elena Chachkarova Kings College London, Sophie Fortz King's College London, Connor Lenihan King's College London |